lterated forcing, Part 2:
CS products and halving

Martin Goldstern

Institute of Discrete Mathematics and Geometry,
Technische Universitat Wien

Hejnice, Feb 4, 2016

@ !lteration

@® Products

® Intermezzo
@ lim sup forcing

@ liminf forcing and halving

Outline

Outline

@ !lteration

Why iterations?

Notation
Recall:

e P3=Pox Qo= Qp*Q x Qo.
e G C P, generic over V, G(2) C Q. generic over V[Go].
Gz * G(2) C P> x Q» = P3 generic over V.

For example: We want to find a model where
2% =k = non(M), i.e., every “small” set is meager, and the
smallest nonmeager set is of size «.
So we construct an iteration (P,, Q, : a < k) with last element
P.., where in each stage « the forcing notion Q, will . ..

e ... add a new real 7,

e ...add a new meager set M, covering all reals in V[G,].
In the end, we will have (at least) x many reals, and every set of
size < k will have appeared in an intermediate universe V[G,]
(not obvious, work a little bit), so it will be covered by the
meager set M, in the next universe V[G,1].

Why iterations? - continued

More generally:
We want to force a statement of the form v.X 3Y : (X, Y),
where

e X is usually a set with few elements (e.g., a small set of
reals, or a small family of measure zero sets),

e and Y will be an object demonstrating that X is small in
some other sense (e.g., a meager set covering X, or a new
real not contained in any element of X)

We start by using a forcing Q, which adds an object Y, taking
care of all X € V.

But then we get new objects X, so we have to force again with
Qy, to get a Y; taking care of those X.

etc.

At the end, after x many steps, we (hopefully) catch our tail and
have taken care of all X.

Why not iterations?

Finite support: can only handle ccc forcing notions.

Finite support: always adds Cohen reals. (However, see
tomorrow’s lecture)

Countable support: CH after a + wq steps. Cannot get
2% > No.

other supports, other limits: (not in this lecture)

Outline

@ Products

Countable support products

Definition

Let (Q; : i € 1) be a family of forcing notions. The countable
support product Q =[], Q; is the set of all partial functions p
with finite or countable domain C / satisfying p(/) € Q; for all /.

Q is naturally ordered by the pointwise order. Each factor Q; is
naturally embedded into Q.

If G C Qs generic, then its projection G(i) C Qy is generic for
Qj; over V.

The products considered in this talk will always have X,-cc.
(All @; will be of size 2%. Now use CH and a A-system
argument.)

Why not CS products?

Problems

e G(i) is not generic over V[G())].
(Actually: G(i) is generic over V[G(j)], but only for the
forcing Q; € V. Often we have a definition of Q;, and we
can evaluate this definition in V[G())] yielding a name Q/;
then G(/) is usually not generic for Q/[G())] over V[G())].
¢ Not clear if the product will preserve R;.

Examples

e The CS product of infinitely many Cohen reals collapses
w1 .

e The CS product of infinitely many unbounded reals
collapses wy.

e The product of 2 (!) proper forcing notions may collapse wy.
(ZFC example)

Outline

® Intermezzo

PLAN On the following slides | will motivate the
technique of “creatures” with “halving”, which was
one ingredient in a recent paper of
A.Fischer-G-Kellner-Shelah.

(not a new technique)

DISCLAIMER To make things more transparent, | will lie
occasionally, by downplaying or ignoring important
details.

WARNING Still, a lot of technical background needs to be
digested.

Outline

@ lim sup forcing

Generic null set

Motivation)
Fix a sequence J = (J : n € w) of intervals of natural numbers,
which are far apart and grow quickly:

cekmind, < maxdp <K Mindppg < - -

We want to add a generic function g where g(n) C 27 is a set
of large relative measure (say, more than (1 — 1/27)).

The set {x € 2¥ | Vn: x[J, € g(n)} has positive measure, so
Ey:={xe€2¥|V>*n:x[Jy € g(n)} has measure 1.

We want this set to avoid all ground model reals; “iterating” our
forcing many times this will tend to make non(null) big.
(non(null) = the smallest size of a non-Lebesgue-null set)

We let LARGE,, := {A C 2% : [A)/joon| > 1 — 1/2r}.

A generic null set, part 2

We want to add a generic function g with g(n) C 2% a set in
LARGE,, := {A C 2% |A//j2/n > 1 — 1/2r},
Definition B
Let Q’ be the set of all p = (kP, sP, CP), where
O sP=(sy,....spp 1), Vi< kP : s; € LARGE;.
® C=(C,:n>k); ¥n: C, C LARGE,.

@® limsup,_,. [[Cnlln = oo, where
|| C||n = log (some reasonable measure of C)/min J,!1.

(Here x — x!! is some sufficiently fast growing function.)

The sets C,, are called “creatures”, their elements “possibilities”.
(Namely: possibilities for fragments of the generic.)

Any generic filter G defines a generic function g, and the set
Ey:={x<c2¥|V>®n:x[Jy € g(n)} has measure 1.

For every old real x € 2¢, the set of all conditions p satisfying
“there are infinitely many n such that x|J, avoids all A € C£” is
dense (explain why!); hence x € 2¥ \ Eg, a null set.

Lemma)
The forcing Q’ has “continuous reading of names”, even “rapid
reading”. (=Lipschitz reading)
More explicitly: For any name x € 2%, and any condition p there
is a stronger condition q such that:

e For all n, the value of x| max(/,) will depend only on

gl max(/p).

Moreover, if we demand the above only for n > ny, then we may
also demand that p and q agree on all creatures below ng.

Proof.
A fusion argument. (blackboard?)

Corollary

Let J and J' be “very disjoint” sequences of intervals, and let

G x G be generic for the forcing Q' x Q”'. Then the set2* \ E,
will cover not only all reals from V/, but also all reals from V[G].
every Q’-name x € 2¥

(For the proof, we have to work a bit with the norms.)

By modifying the forcing notion Q” a little bit, we get the
following stronger version:

Theorem
Assume GCH for simplicity, x uncountable and regular.
Let P = [],... Qi be a countable support product of forcing
notions Q;, each isomorphic to (the same) Q”.
Then each coordinate i* comes conceptually “after” all the
other coordinates. That means:
Whenever x is a][, Qi-name of a function in 2%,
then x avoids the measure 1 set E4« (where g* is the
generic function added by Q-).

As a consequence, I-q non(null) > k.

Outline

@ liminf forcing and halving

WARNING Everything so far was just a warm-up.
The serious stuff starts now.

We start by recalling the description of the generic null set, and
change it to a generic meager set.

What we did 10 minutes ago: generic null

Motivation .
Fix a sequence J = (J : n € w) of intervals of natural numbers,
which are far apart and grow quickly:

- mind, <K maxdJp, < mindpypq K -

We want to add a generic function g where g(n) C 27 is a set
of large relative measure (say, more than (1 — 1/27)).

The set {x € 2* | Vn: x[J, € g(n)} has positive measure, so
Ey:={xe€2¥|V>*n: x|y € g(n)} has measure 1.

We want this set to avoid all ground model reals; “iterating” our
forcing many times this will tend to make non(null) big.
(non(null) = the smallest size of a non-Lebesgue-null set)

A generic meager set

Motivation)
Fix a sequence | = (I, : n € w) of intervals of natural numbers,
which are far apart and grow quickly:

ce<minly <maxly <minly g < -

We want to add a generic function g, defined on |, /.

The set Ry = {x € 2 | 3*°n: x[l, = gy} is residual
(co-meager), its complement

Mg = {x €2¥ |V>*n: x|l # glly} is meager.

We want the set My to contain all ground model reals.

This means that in our forcing conditions we must have the
possibility to remove x|/, from almost all C,,.

This will make fusion more difficult.

A generic meager set, part 2

We want to add a generic function g defined on J,, I,
Definition
Let Q' be the set of all p = (kP, sP, CP, dP), where
@ sP=(s,....S0), Vi< kP:sje2l
®C=(C,:n>k); Vn:0+C,cC2h
® d° =(d,: n> k), each d, € RT.
@ liminf,_. ||Cnlln = oo, Where ||C||, = 109(ICl — dn)/min Jy!1.
g < p means all the obvious things: k becomes bigger,

s becomes longer (inside the appropriate C;), the C; shrink, and
d? > dP for all n > k9.

Halving and unhalving

Halving = Take 50% of all our possessions (not counting those
which are already hidden), and hide them in a secret stash.
Logarithmically speaking, we have lost almost no money. (At
most one zero, from 1000 million to 500 million)

Concretely: Halving a creature (Cj, d,) means: replace d, by
dj, := dp + 5(|Cn| — dh).

From (|Cp| — dp) to (|Cy| — d},) we lose 50%, so the norm

log (IC| — dn)/min J,it changes by at most 1/min J,!1.

Unhalving = When you lose “all” your money, remember your
secret stash and recover it. You are now almost as rich as
before. (Logarithmically speaking, at most one digit less.)
Concretely: go back from dJ, to dj,.

Technical lemma: If you apply unhalving to finitely many
creatures of a condition g, resulting in a condition ¢’, then

q="q

Continuous reading, using halving

We use the lim sup forcing Q' which adds a meager set.
(“Wlog” we use concrete numbers, for better readability.)

Lemma (Unhalving Lemma)

Let o be the name of an ordinal.

Given a condition, say p = (s = 0, (Co, do), (Cy, d1), .. .).
Assume that C(0) allows only 3 possibilities, C(1) allows 10
possibilities, and all norms log(|Cp| — dp)/n'! are bigger than
1000 forn > 2.

Then there is a condition q < p such that

e C{=ClandCi=CY,
e ¥Vn>2:log(|C{| — d7)/n"! > 970 (actually: > 1000 — 30/2!1)
e Ifthere is a conditionr < q, r = (So, s1,(C5,d5),......)

deciding «, with all norms > 0, then already
q A (S0, 81) := (S0, 51,(CJ, d3),......) decides q.

This lemma, rewritten with the proper parameters, allows a
fusion argument to show continuous reading for our forcing.

Proof of the unhalving lemma

Start with p. For each possibility s of the 30 possibilities from
C(0) x C(1), say the i-th one, do the following:
 Strengthen the condition by replacing C(0) and C(1) by s.
o (“DECISION”) Can you strengthen the current version of
C(2), C(3),...in such a way that « is (essentially) decided,
but all norms are still > 1000 — i? If so, do it.
e (“HALVING”) Otherwise, apply “halving” to C(2), C(3), etc.
At the end we get a condition q.
Assume that r = (s, 51, (C3, d5),...) < g decides a. What did
we do when we dealt (in step i) with (sg, $1)?
e Decided o? Good.
e Halving? Try to get a contradiction.
Apply unhalving to all those (Cj, df) with norm < 1000
(there are only finitely many) to get a condition r’ =* r. But
now in r’ all creatures have norm > 1000 — /, so r’/
witnesses that we were in the DECISION case.

Conclusion

Theorem (Fischer-G-Kellner-Shelah 2015)

Assume GCH, and let k, \ be regular uncountable.

Let(l: new)and(Jn: necw) be as above. (Fast growing
sequences of intervals).

Let Q be a product of k many copies of the “generic null”
forcing Q’ and \ many copies of the “generic meager” forcing
Q ! . (not actually true. .. Use common halving parameter)

Then I-q “any set of size < k is null, and any set of size < X is
meager’.

Moreover: Iq non(null)=x, non(meager)=\.

Moreover: We can combine this with other forcings (e.g.
making 2% = p).

	Iteration
	Products
	Intermezzo
	limsup forcing
	liminf forcing and halving

