Iterated forcing, Part 2: CS products and halving

Martin Goldstern

Institute of Discrete Mathematics and Geometry,
Technische Universität Wien
Hejnice, Feb 4, 2016

Outline

(1) Iteration
(2) Products
(3) Intermezzo
(4) limsup forcing
(5) liminf forcing and halving

Outline

(1) Iteration
(2) Products
(3) Intermezzo
4) limsup forcing
(5) liminf forcing and halving

Why iterations?

Notation

Recall:

- $P_{3}=P_{2} * Q_{2}=Q_{0} * Q_{1} * Q_{2}$.
- $G_{2} \subseteq P_{2}$ generic over $V, G(2) \subseteq Q_{2}$ generic over $V\left[G_{2}\right]$. $G_{2} * G(2) \subseteq P_{2} * Q_{2}=P_{3}$ generic over V.

For example: We want to find a model where
$2^{\aleph_{0}}=\kappa=\operatorname{non}(\mathcal{M})$, i.e., every "small" set is meager, and the smallest nonmeager set is of size κ.
So we construct an iteration ($\left.P_{\alpha}, Q_{\alpha}: \alpha<\kappa\right)$ with last element P_{κ}, where in each stage α the forcing notion Q_{α} will ...

- ... add a new real η_{α}
- ... add a new meager set M_{α} covering all reals in $V\left[G_{\alpha}\right]$.

In the end, we will have (at least) κ many reals, and every set of size $<\kappa$ will have appeared in an intermediate universe $V\left[G_{\alpha}\right]$ (not obvious, work a little bit), so it will be covered by the meager set M_{α} in the next universe $V\left[G_{\alpha+1}\right]$.

Why iterations? - continued

More generally:
We want to force a statement of the form $\forall X \exists Y: \varphi(X, Y)$,
where

- X is usually a set with few elements (e.g., a small set of reals, or a small family of measure zero sets),
- and Y will be an object demonstrating that X is small in some other sense (e.g., a meager set covering X, or a new real not contained in any element of X)
We start by using a forcing Q_{0}, which adds an object Y_{0} taking care of all $X \in V$.
But then we get new objects X, so we have to force again with Q_{1}, to get a Y_{1} taking care of those X. etc.
At the end, after κ many steps, we (hopefully) catch our tail and have taken care of all X.

Why not iterations?

- Finite support: can only handle ccc forcing notions.
- Finite support: always adds Cohen reals. (However, see tomorrow's lecture)
- Countable support: CH after $\alpha+\omega_{1}$ steps. Cannot get $2^{\aleph_{0}}>\aleph_{2}$.
- other supports, other limits: (not in this lecture)

Outline

(1) Iteration

(2) Products

3 Intermezzo
4) lim sup forcing
(5) liminf forcing and halving

Countable support products

Definition

Let ($Q_{i}: i \in I$) be a family of forcing notions. The countable support product $Q=\prod_{i \in I} Q_{i}$ is the set of all partial functions p with finite or countable domain $\subseteq I$ satisfying $p(i) \in Q_{i}$ for all i.
Q is naturally ordered by the pointwise order. Each factor Q_{i} is naturally embedded into Q.
If $G \subseteq Q$ is generic, then its projection $G(i) \subseteq Q_{i}$ is generic for Q_{i} over V.
The products considered in this talk will always have \aleph_{2}-cc. (All Q_{i} will be of size $2^{\aleph_{0}}$. Now use CH and a Δ-system argument.)

Why not CS products?

Problems

- $G(i)$ is not generic over $V[G(j)]$. (Actually: $G(i)$ is generic over $V[G(j)]$, but only for the forcing $Q_{i} \in V$. Often we have a definition of Q_{i}, and we can evaluate this definition in $V[G(j)]$ yielding a name Q_{i}^{\prime}; then $G(i)$ is usually not generic for $Q_{i}^{\prime}[G(j)]$ over $V[G(j)]$.
- Not clear if the product will preserve \aleph_{1}.

Examples

- The CS product of infinitely many Cohen reals collapses ω_{1}.
- The CS product of infinitely many unbounded reals collapses ω_{1}.
- The product of 2 (!) proper forcing notions may collapse ω_{1}. (ZFC example)

Outline

(1) Iteration

(2) Products
(3) Intermezzo
4) lim sup forcing
(5) liminf forcing and halving

PLAN On the following slides I will motivate the technique of "creatures" with "halving", which was one ingredient in a recent paper of A.Fischer-G-Kellner-Shelah. (not a new technique)
DISCLAIMER To make things more transparent, I will lie occasionally, by downplaying or ignoring important details.
WARNING Still, a lot of technical background needs to be digested.

Outline

(1) Iteration

(2) Products
(3) Intermezzo
(4) lim sup forcing
(5) liminf forcing and halving

Generic null set

Motivation

Fix a sequence $\bar{J}=\left(J_{n}: n \in \omega\right)$ of intervals of natural numbers, which are far apart and grow quickly:
$\cdots \ll \min J_{n} \ll \max J_{n} \ll \min J_{n+1} \ll \cdots$
We want to add a generic function g where $g(n) \subseteq 2^{J_{n}}$ is a set of large relative measure (say, more than ($1-1 / 2^{n}$)).
The set $\left\{x \in 2^{\omega} \mid \forall n: x\left\lceil J_{n} \in g(n)\right\}\right.$ has positive measure, so $E_{g}:=\left\{x \in 2^{\omega}\left|\forall^{\infty} n: x\right| J_{n} \in g(n)\right\}$ has measure 1.
We want this set to avoid all ground model reals; "iterating" our forcing many times this will tend to make non(null) big. (non(null) $=$ the smallest size of a non-Lebesgue-null set)
We let LARGE $n:=\left\{A \subseteq 2^{J_{n}}:|A| / 2^{J_{n}} \mid>1-1 / 2^{n}\right\}$.

A generic null set, part 2

We want to add a generic function g with $g(n) \subseteq 2^{J_{n}}$ a set in
LARGE $_{n}:=\left\{A \subseteq 2^{J_{n}}:|A| / / 2^{J_{n}} \mid>1-1 / 2^{n}\right\}$.

Definition

Let Q^{j} be the set of all $p=\left(k^{p}, s^{p}, \bar{C}^{p}\right)$, where
(1) $s^{p}=\left(s_{0}^{p}, \ldots, s_{k^{p}-1}^{p}\right), \forall i<k^{p}: s_{i} \in \operatorname{LARGE}_{i}$.
(2) $\bar{C}=\left(C_{n}: n \geq k\right) ; \forall n: C_{n} \subseteq \operatorname{LARGE}_{n}$.
(3) $\limsup { }_{n \rightarrow \infty}\left\|C_{n}\right\|_{n}=\infty$, where
$\|C\|_{n}=\log ($ some reasonable measure of $C) / \min J_{n}!!$.
(Here $x \mapsto x$!! is some sufficiently fast growing function.)
The sets C_{n} are called "creatures", their elements "possibilities".
(Namely: possibilities for fragments of the generic.)
Any generic filter G defines a generic function g, and the set $E_{g}:=\left\{x \in 2^{\omega}\left|\forall^{\infty} n: x\right| J_{n} \in g(n)\right\}$ has measure 1.
For every old real $x \in 2^{\omega}$, the set of all conditions p satisfying "there are infinitely many n such that $x \upharpoonright J_{n}$ avoids all $A \in C_{n}^{p,}$, is dense (explain why!); hence $x \in 2^{\omega} \backslash E_{g}$, a null set.

Lemma

The forcing $Q^{\bar{j}}$ has "continuous reading of names", even "rapid reading". (=Lipschitz reading)
More explicitly: For any name $\underset{\sim}{x} \in 2^{\omega}$, and any condition p there is a stronger condition q such that:

- For all n, the value of $x \upharpoonright \max \left(I_{n}\right)$ will depend only on $g \upharpoonright \max \left(I_{n}\right)$.
Moreover, if we demand the above only for $n \geq n_{0}$, then we may also demand that p and q agree on all creatures below n_{0}.

Proof.

A fusion argument. (blackboard?)

Corollary

Let \bar{J} and \bar{J} ' be "very disjoint" sequences of intervals, and let $G \times G^{\prime}$ be generic for the forcing $Q^{j} \times Q^{j^{j}}$. Then the set $2^{\omega} \backslash E_{g}$ will cover not only all reals from V, but also all reals from $V\left[G^{\prime}\right]$. every Q^{j}-name $\underset{\sim}{x} \in 2^{\omega}$
(For the proof, we have to work a bit with the norms.)

By modifying the forcing notion $Q^{\bar{J}}$ a little bit, we get the following stronger version:
Theorem
Assume GCH for simplicity, κ uncountable and regular. Let $P=\prod_{i<\kappa} Q_{i}$ be a countable support product of forcing notions Q_{i}, each isomorphic to (the same) Q^{J}.
Then each coordinate i^{*} comes conceptually "after" all the other coordinates. That means:

Whenever x is a $\prod_{i \neq i^{*}} Q_{i}$-name of a function in 2^{ω}, then x avoids the measure 1 set $E_{g^{*}}$ (where g^{*} is the generic function added by $Q_{i^{*}}$).

As a consequence, \Vdash_{Q} non $($ null $) \geq \kappa$.

Outline

(1) Iteration

(2) Products
(3) Intermezzo
(4) lim sup forcing
(5) liminf forcing and halving

WARNING Everything so far was just a warm-up. The serious stuff starts now.

We start by recalling the description of the generic null set, and change it to a generic meager set.

What we did 10 minutes ago: generic null

Motivation

Fix a sequence $\bar{J}=\left(J_{n}: n \in \omega\right)$ of intervals of natural numbers, which are far apart and grow quickly:

$$
\cdots \ll \min J_{n} \ll \max J_{n} \ll \min J_{n+1} \ll \cdots
$$

We want to add a generic function g where $g(n) \subseteq 2^{J_{n}}$ is a set of large relative measure (say, more than $\left(1-1 / 2^{n}\right)$).
The set $\left\{x \in 2^{\omega} \mid \forall n: x\left\lceil J_{n} \in g(n)\right\}\right.$ has positive measure, so $E_{g}:=\left\{x \in 2^{\omega}\left|\forall^{\infty} n: x\right| J_{n} \in g(n)\right\}$ has measure 1.
We want this set to avoid all ground model reals; "iterating" our forcing many times this will tend to make non(null) big.
(non(null) $=$ the smallest size of a non-Lebesgue-null set)

A generic meager set

Motivation

Fix a sequence $\bar{I}=\left(I_{n}: n \in \omega\right)$ of intervals of natural numbers, which are far apart and grow quickly:

$$
\cdots \ll \min I_{n} \ll \max I_{n} \ll \min I_{n+1} \ll \cdots
$$

We want to add a generic function g, defined on $\cup_{n} I_{n}$. The set $R_{g}=\left\{x \in 2^{\omega}|\exists \infty n: x|_{n}=g \mid I_{n}\right\}$ is residual (co-meager), its complement
$M_{g}:=\left\{x \in 2^{\omega} \mid \forall^{\infty} n: x \uparrow I_{n} \neq g\left\lceil l_{n}\right\}\right.$ is meager.
We want the set M_{g} to contain all ground model reals.
This means that in our forcing conditions we must have the possibility to remove $x \|_{n}$ from almost all C_{n}.
This will make fusion more difficult.

A generic meager set, part 2

We want to add a generic function g defined on $\bigcup_{n} I_{n}$,

Definition

Let $Q^{\bar{T}}$ be the set of all $p=\left(k^{p}, s^{p}, \bar{C}^{p}, \bar{d}^{p}\right)$, where
(1) $s^{p}=\left(s_{0}^{p}, \ldots, s_{k^{p}-1}^{p}\right), \forall i<k^{p}: s_{i} \in 2^{l_{i}}$.
(2) $\bar{C}=\left(C_{n}: n \geq k\right) ; \forall n: \emptyset \neq C_{n} \subseteq 2^{\prime n}$.
(3) $d^{p}=\left(d_{n}: n \geq k\right)$, each $d_{n} \in \mathbb{R}^{+}$.
(4) $\lim \inf _{n \rightarrow \infty}\left\|C_{n}\right\|_{n}=\infty$, where $\|C\|_{n}=\log \left(|C|-d_{n}\right) /$ min $J_{n}!$.
$q \leq p$ means all the obvious things: k becomes bigger, s becomes longer (inside the appropriate C_{i}), the C_{i} shrink, and $d_{n}^{q} \geq d_{n}^{p}$ for all $n \geq k^{q}$.

Halving and unhalving

Halving = Take 50\% of all our possessions (not counting those which are already hidden), and hide them in a secret stash. Logarithmically speaking, we have lost almost no money. (At most one zero, from 1000 million to 500 million)
Concretely: Halving a creature (C_{n}, d_{n}) means: replace d_{n} by $d_{n}^{\prime}:=d_{n}+\frac{1}{2}\left(\left|C_{n}\right|-d_{n}\right)$.
From $\left(\left|C_{n}\right|-d_{n}\right)$ to $\left(\left|C_{n}\right|-d_{n}^{\prime}\right)$ we lose 50%, so the norm $\log \left(|C|-d_{n}\right) / \min J_{n}!!$ changes by at most $1 / \min J_{n}!!$.

Unhalving = When you lose "all" your money, remember your secret stash and recover it. You are now almost as rich as before. (Logarithmically speaking, at most one digit less.) Concretely: go back from d_{n}^{\prime} to d_{n}.
Technical lemma: If you apply unhalving to finitely many creatures of a condition q, resulting in a condition q^{\prime}, then $q^{\prime}={ }^{*} q$.

Continuous reading, using halving

We use the lim sup forcing $Q^{\overline{7}}$ which adds a meager set.
("Wlog" we use concrete numbers, for better readability.)
Lemma (Unhalving Lemma)
Let α be the name of an ordinal.
Given a condition, say $p=\left(s=\emptyset,\left(C_{0}, d_{0}\right),\left(C_{1}, d_{1}\right), \ldots\right)$.
Assume that $C(0)$ allows only 3 possibilities, $C(1)$ allows 10 possibilities, and all norms $\log \left(\left|C_{n}\right|-d_{n}\right) / n!$! are bigger than 1000 for $n \geq 2$.
Then there is a condition $q \leq p$ such that

- $C_{0}^{q}=C_{0}^{p}$ and $C_{1}^{q}=C_{1}^{p}$,
- $\forall n \geq 2: \log \left(\left|C_{n}^{q}\right|-d_{n}^{q}\right) / n!!\geq 970$ (actually: $\left.\geq 1000-30 / 2!!\right)$
- If there is a condition $r \leq q, r=\left(s_{0}, s_{1},\left(C_{2}^{r}, d_{2}^{r}\right), \ldots \ldots\right)$ deciding α, with all norms >0, then already $q \wedge\left(s_{0}, s_{1}\right):=\left(s_{0}, s_{1},\left(C_{2}^{q}, d_{2}^{q}\right), \ldots \ldots\right)$ decides α.

This lemma, rewritten with the proper parameters, allows a fusion argument to show continuous reading for our forcing.

Proof of the unhalving lemma

Start with p. For each possibility s of the 30 possibilities from $C(0) \times C(1)$, say the i-th one, do the following:

- Strengthen the condition by replacing $C(0)$ and $C(1)$ by s.
- ("DECISION") Can you strengthen the current version of $C(2), C(3), \ldots$ in such a way that α is (essentially) decided, but all norms are still $\geq 1000-i$? If so, do it.
- ("HALVING") Otherwise, apply "halving" to $C(2), C(3)$, etc.

At the end we get a condition q.
Assume that $r=\left(s_{0}, s_{1},\left(C_{2}^{r}, d_{2}^{r}\right), \ldots\right) \leq q$ decides $\underset{\sim}{\alpha}$. What did we do when we dealt (in step i) with $\left(s_{0}, s_{1}\right)$?

- Decided $\underset{\sim}{\alpha}$? Good.
- Halving? Try to get a contradiction.

Apply unhalving to all those $\left(C_{j}^{r}, d_{j}^{r}\right)$ with norm <1000 (there are only finitely many) to get a condition $r^{\prime}={ }^{*} r$. But now in r^{\prime} all creatures have norm $\geq 1000-i$, so r^{\prime} witnesses that we were in the DECISION case.

Conclusion

Theorem (Fischer-G-Kellner-Shelah 2015)

Assume GCH, and let κ, λ be regular uncountable.
Let $\left(I_{n}: n \in \omega\right)$ and $\left(J_{n}: n \in \omega\right)$ be as above. (Fast growing sequences of intervals).
Let Q be a product of κ many copies of the "generic null" forcing Q^{j} and λ many copies of the "generic meager" forcing Q'. (not actually true... Use common halving parameter)
Then \Vdash_{Q} "any set of size $<\kappa$ is null, and any set of size $<\lambda$ is meager".
Moreover: \Vdash_{Q} non(null)=к, non(meager)=$=\lambda$.
Moreover: We can combine this with other forcings (e.g. making $2^{\aleph_{0}}=\mu$).

