
Iterated forcing, Part 2:
CS products and halving

Martin Goldstern

Institute of Discrete Mathematics and Geometry,
Technische Universität Wien

Hejnice, Feb 4, 2016

Outline

1 Iteration

2 Products

3 Intermezzo

4 lim sup forcing

5 liminf forcing and halving

Outline

1 Iteration

2 Products

3 Intermezzo

4 lim sup forcing

5 liminf forcing and halving

Why iterations?

Notation
Recall:
• P3 = P2 ∗Q2 = Q0 ∗Q1 ∗Q2.
• G2 ⊆ P2 generic over V , G(2) ⊆ Q2 generic over V [G2].

G2 ∗G(2) ⊆ P2 ∗Q2 = P3 generic over V .

For example: We want to find a model where
2ℵ0 = κ = non(M), i.e., every “small” set is meager, and the
smallest nonmeager set is of size κ.
So we construct an iteration (Pα,Qα : α < κ) with last element
Pκ, where in each stage α the forcing notion Qα will . . .
• . . . add a new real ηα
• . . . add a new meager set Mα covering all reals in V [Gα].

In the end, we will have (at least) κ many reals, and every set of
size < κ will have appeared in an intermediate universe V [Gα]
(not obvious, work a little bit), so it will be covered by the
meager set Mα in the next universe V [Gα+1].

Why iterations? - continued

More generally:
We want to force a statement of the form ∀X ∃Y : ϕ(X ,Y),
where
• X is usually a set with few elements (e.g., a small set of

reals, or a small family of measure zero sets),
• and Y will be an object demonstrating that X is small in

some other sense (e.g., a meager set covering X , or a new
real not contained in any element of X)

We start by using a forcing Q0, which adds an object Y0 taking
care of all X ∈ V .
But then we get new objects X , so we have to force again with
Q1, to get a Y1 taking care of those X .
etc.
At the end, after κ many steps, we (hopefully) catch our tail and
have taken care of all X .

Why not iterations?

• Finite support: can only handle ccc forcing notions.
• Finite support: always adds Cohen reals. (However, see

tomorrow’s lecture)
• Countable support: CH after α + ω1 steps. Cannot get

2ℵ0 > ℵ2.
• other supports, other limits: (not in this lecture)

Outline

1 Iteration

2 Products

3 Intermezzo

4 lim sup forcing

5 liminf forcing and halving

Countable support products

Definition
Let (Qi : i ∈ I) be a family of forcing notions. The countable
support product Q =

∏
i∈I Qi is the set of all partial functions p

with finite or countable domain ⊆ I satisfying p(i) ∈ Qi for all i .
Q is naturally ordered by the pointwise order. Each factor Qi is
naturally embedded into Q.
If G ⊆ Q is generic, then its projection G(i) ⊆ Qi is generic for
Qi over V .
The products considered in this talk will always have ℵ2-cc.
(All Qi will be of size 2ℵ0 . Now use CH and a ∆-system
argument.)

Why not CS products?

Problems

• G(i) is not generic over V [G(j)].
(Actually: G(i) is generic over V [G(j)], but only for the
forcing Qi ∈ V . Often we have a definition of Qi , and we
can evaluate this definition in V [G(j)] yielding a name

˜
Q′i ;

then G(i) is usually not generic for
˜
Q′i [G(j)] over V [G(j)].

• Not clear if the product will preserve ℵ1.

Examples

• The CS product of infinitely many Cohen reals collapses
ω1.

• The CS product of infinitely many unbounded reals
collapses ω1.

• The product of 2 (!) proper forcing notions may collapse ω1.
(ZFC example)

The following slides sketch an setup in which CS products will
work. Necessarily all forcing notions will be ωω-bounding (in
other words: weakly distributive).

Outline

1 Iteration

2 Products

3 Intermezzo

4 lim sup forcing

5 liminf forcing and halving

PLAN On the following slides I will motivate the
technique of “creatures” with “halving”, which was
one ingredient in a recent paper of
A.Fischer-G-Kellner-Shelah.
(not a new technique)

DISCLAIMER To make things more transparent, I will lie
occasionally, by downplaying or ignoring important
details.

WARNING Still, a lot of technical background needs to be
digested.

Outline

1 Iteration

2 Products

3 Intermezzo

4 lim sup forcing

5 liminf forcing and halving

Generic null set

Motivation
Fix a sequence J̄ = (Jn : n ∈ ω) of intervals of natural numbers,
which are far apart and grow quickly:

· · · � min Jn � max Jn � min Jn+1 � · · ·

We want to add a generic function g where g(n) ⊆ 2Jn is a set
of large relative measure (say, more than (1− 1/2n)).
The set {x ∈ 2ω | ∀n : x�Jn ∈ g(n)} has positive measure, so
Eg := {x ∈ 2ω | ∀∞n : x�Jn ∈ g(n)} has measure 1.
We want this set to avoid all ground model reals; “iterating” our
forcing many times this will tend to make non(null) big.
(non(null) = the smallest size of a non-Lebesgue-null set)
We let LARGEn := {A ⊆ 2Jn : |A|/|2Jn | > 1− 1/2n}.

A generic null set, part 2

We want to add a generic function g with g(n) ⊆ 2Jn a set in
LARGEn := {A ⊆ 2Jn : |A|/|2Jn | > 1− 1/2n}.
Definition
Let QJ̄ be the set of all p = (kp, sp, C̄p), where

1 sp = (sp
0 , . . . , s

p
kp−1), ∀i < kp : si ∈ LARGEi .

2 C̄ = (Cn : n ≥ k); ∀n : Cn ⊆ LARGEn.
3 lim supn→∞ ‖Cn‖n =∞, where
‖C‖n = log (some reasonable measure of C)/min Jn!!.

(Here x 7→ x!! is some sufficiently fast growing function.)
The sets Cn are called “creatures”, their elements “possibilities”.
(Namely: possibilities for fragments of the generic.)
Any generic filter G defines a generic function g, and the set
Eg := {x ∈ 2ω | ∀∞n : x�Jn ∈ g(n)} has measure 1.
For every old real x ∈ 2ω, the set of all conditions p satisfying
“there are infinitely many n such that x�Jn avoids all A ∈ Cp

n ” is
dense (explain why!); hence x ∈ 2ω \ Eg , a null set.

Lemma
The forcing QJ̄ has “continuous reading of names”, even “rapid
reading”. (=Lipschitz reading)
More explicitly: For any name

˜
x ∈ 2ω, and any condition p there

is a stronger condition q such that:
• For all n, the value of

˜
x�max(In) will depend only on

g�max(In).
Moreover, if we demand the above only for n ≥ n0, then we may
also demand that p and q agree on all creatures below n0.

Proof.
A fusion argument. (blackboard?)

Corollary
Let J̄ and J̄ ′ be “very disjoint” sequences of intervals, and let
G×G′ be generic for the forcing QJ̄ ×QJ̄′ . Then the set 2ω \Eg
will cover not only all reals from V, but also all reals from V [G′].
every QJ̄ -name

˜
x ∈ 2ω

(For the proof, we have to work a bit with the norms.)

By modifying the forcing notion QJ̄ a little bit, we get the
following stronger version:

Theorem
Assume GCH for simplicity, κ uncountable and regular.
Let P =

∏
i<κ Qi be a countable support product of forcing

notions Qi , each isomorphic to (the same) QJ̄ .
Then each coordinate i∗ comes conceptually “after” all the
other coordinates. That means:

Whenever
˜
x is a

∏
i 6=i∗ Qi -name of a function in 2ω,

then x avoids the measure 1 set Eg∗ (where g∗ is the
generic function added by Qi∗).

As a consequence,
Q non(null) ≥ κ.

Outline

1 Iteration

2 Products

3 Intermezzo

4 lim sup forcing

5 liminf forcing and halving

WARNING Everything so far was just a warm-up.
The serious stuff starts now.

We start by recalling the description of the generic null set, and
change it to a generic meager set.

What we did 10 minutes ago: generic null

Motivation
Fix a sequence J̄ = (Jn : n ∈ ω) of intervals of natural numbers,
which are far apart and grow quickly:

· · · � min Jn � max Jn � min Jn+1 � · · ·

We want to add a generic function g where g(n) ⊆ 2Jn is a set
of large relative measure (say, more than (1− 1/2n)).
The set {x ∈ 2ω | ∀n : x�Jn ∈ g(n)} has positive measure, so
Eg := {x ∈ 2ω | ∀∞n : x�Jn ∈ g(n)} has measure 1.
We want this set to avoid all ground model reals; “iterating” our
forcing many times this will tend to make non(null) big.
(non(null) = the smallest size of a non-Lebesgue-null set)

A generic meager set

Motivation
Fix a sequence Ī = (In : n ∈ ω) of intervals of natural numbers,
which are far apart and grow quickly:

· · · � min In � max In � min In+1 � · · ·

We want to add a generic function g, defined on
⋃

n In.
The set Rg = {x ∈ 2ω | ∃∞n : x�In = g�In} is residual
(co-meager), its complement
Mg := {x ∈ 2ω | ∀∞n : x�In 6= g�In} is meager.
We want the set Mg to contain all ground model reals.
This means that in our forcing conditions we must have the
possibility to remove x�In from almost all Cn.
This will make fusion more difficult.

A generic meager set, part 2

We want to add a generic function g defined on
⋃

n In,

Definition
Let Q Ī be the set of all p = (kp, sp, C̄p, d̄p), where

1 sp = (sp
0 , . . . , s

p
kp−1), ∀i < kp : si ∈ 2Ii .

2 C̄ = (Cn : n ≥ k); ∀n : ∅ 6= Cn ⊆ 2In .
3 dp = (dn : n ≥ k), each dn ∈ R+.
4 lim infn→∞ ‖Cn‖n =∞, where ‖C‖n = log (|C| − dn)/min Jn!!.

q ≤ p means all the obvious things: k becomes bigger,
s becomes longer (inside the appropriate Ci), the Ci shrink, and
dq

n ≥ dp
n for all n ≥ kq.

Halving and unhalving

Halving = Take 50% of all our possessions (not counting those
which are already hidden), and hide them in a secret stash.
Logarithmically speaking, we have lost almost no money. (At
most one zero, from 1000 million to 500 million)
Concretely: Halving a creature (Cn,dn) means: replace dn by
d ′n := dn + 1

2(|Cn| − dn).
From (|Cn| − dn) to (|Cn| − d ′n) we lose 50%, so the norm
log (|C| − dn)/min Jn!! changes by at most 1/min Jn!!.

Unhalving = When you lose “all” your money, remember your
secret stash and recover it. You are now almost as rich as
before. (Logarithmically speaking, at most one digit less.)
Concretely: go back from d ′n to dn.
Technical lemma: If you apply unhalving to finitely many
creatures of a condition q, resulting in a condition q′, then
q′ =∗ q.

Continuous reading, using halving

We use the lim sup forcing Q Ī which adds a meager set.
(“Wlog” we use concrete numbers, for better readability.)

Lemma (Unhalving Lemma)
Let

˜
α be the name of an ordinal.

Given a condition, say p = (s = ∅, (C0,d0), (C1,d1), . . .).
Assume that C(0) allows only 3 possibilities, C(1) allows 10
possibilities, and all norms log(|Cn| − dn)/n!! are bigger than
1000 for n ≥ 2.
Then there is a condition q ≤ p such that
• Cq

0 = Cp
0 and Cq

1 = Cp
1 ,

• ∀n ≥ 2: log(|Cq
n | − dq

n)/n!! ≥ 970 (actually: ≥ 1000− 30/2!!)

• If there is a condition r ≤ q, r = (s0, s1, (Cr
2,d

r
2),)

deciding
˜
α, with all norms > 0, then already

q ∧ (s0, s1) := (s0, s1, (C
q
2 ,d

q
2),) decides

˜
α.

This lemma, rewritten with the proper parameters, allows a
fusion argument to show continuous reading for our forcing.

Proof of the unhalving lemma

Start with p. For each possibility s of the 30 possibilities from
C(0)× C(1), say the i-th one, do the following:
• Strengthen the condition by replacing C(0) and C(1) by s.
• (“DECISION”) Can you strengthen the current version of

C(2),C(3), . . . in such a way that
˜
α is (essentially) decided,

but all norms are still ≥ 1000− i? If so, do it.
• (“HALVING”) Otherwise, apply “halving” to C(2), C(3), etc.

At the end we get a condition q.
Assume that r = (s0, s1, (Cr

2,d
r
2), . . .) ≤ q decides

˜
α. What did

we do when we dealt (in step i) with (s0, s1)?
• Decided

˜
α? Good.

• Halving? Try to get a contradiction.
Apply unhalving to all those (Cr

j ,d
r
j) with norm < 1000

(there are only finitely many) to get a condition r ′ =∗ r . But
now in r ′ all creatures have norm ≥ 1000− i , so r ′

witnesses that we were in the DECISION case.

Conclusion

Theorem (Fischer-G-Kellner-Shelah 2015)
Assume GCH, and let κ, λ be regular uncountable.
Let (In : n ∈ ω) and (Jn : n ∈ ω) be as above. (Fast growing
sequences of intervals).
Let Q be a product of κ many copies of the “generic null”
forcing QJ̄ and λ many copies of the “generic meager” forcing
Q Ī . (not actually true. . . Use common halving parameter)

Then
Q “any set of size < κ is null, and any set of size < λ is
meager”.
Moreover:
Q non(null)=κ, non(meager)=λ.
Moreover: We can combine this with other forcings (e.g.
making 2ℵ0 = µ).

	Iteration
	Products
	Intermezzo
	limsup forcing
	liminf forcing and halving

