Iterated forcing, Part 2: CS products and halving

Martin Goldstern

Institute of Discrete Mathematics and Geometry, Technische Universität Wien

Hejnice, Feb 4, 2016

2 Products

3 Intermezzo

- 2 Products
- 3 Intermezzo
- 4 lim sup forcing
- **(5)** liminf forcing and halving

Why iterations?

Notation

Recall:

- $P_3 = P_2 * Q_2 = Q_0 * Q_1 * Q_2$.
- $G_2 \subseteq P_2$ generic over $V, G(2) \subseteq Q_2$ generic over $V[G_2]$. $G_2 * G(2) \subseteq P_2 * Q_2 = P_3$ generic over V.

For example: We want to find a model where $2^{\aleph_0} = \kappa = \operatorname{non}(\mathcal{M})$, i.e., every "small" set is meager, and the smallest nonmeager set is of size κ .

So we construct an iteration ($P_{\alpha}, Q_{\alpha} : \alpha < \kappa$) with last element P_{κ} , where in each stage α the forcing notion Q_{α} will ...

• ... add a new real η_{α}

• ... add a new meager set M_{α} covering all reals in $V[G_{\alpha}]$. In the end, we will have (at least) κ many reals, and every set of size $< \kappa$ will have appeared in an intermediate universe $V[G_{\alpha}]$ (not obvious, work a little bit), so it will be covered by the meager set M_{α} in the next universe $V[G_{\alpha+1}]$.

Why iterations? - continued

More generally:

We want to force a statement of the form $\forall X \exists Y : \varphi(X, Y)$, where

- X is usually a set with few elements (e.g., a small set of reals, or a small family of measure zero sets),
- and Y will be an object demonstrating that X is small in some other sense (e.g., a meager set covering X, or a new real not contained in any element of X)

We start by using a forcing Q_0 , which adds an object Y_0 taking care of all $X \in V$.

But then we get new objects X, so we have to force again with Q_1 , to get a Y_1 taking care of those X. etc.

At the end, after κ many steps, we (hopefully) catch our tail and have taken care of all *X*.

Why not iterations?

- Finite support: can only handle ccc forcing notions.
- Finite support: always adds Cohen reals. (However, see tomorrow's lecture)
- Countable support: CH after $\alpha + \omega_1$ steps. Cannot get $2^{\aleph_0} > \aleph_2$.
- other supports, other limits: (not in this lecture)

2 Products

3 Intermezzo

4 lim sup forcing

(5) liminf forcing and halving

Countable support products

Definition

Let $(Q_i : i \in I)$ be a family of forcing notions. The countable support product $Q = \prod_{i \in I} Q_i$ is the set of all partial functions p with finite or countable domain $\subseteq I$ satisfying $p(i) \in Q_i$ for all i.

Q is naturally ordered by the pointwise order. Each factor Q_i is naturally embedded into Q.

If $G \subseteq Q$ is generic, then its projection $G(i) \subseteq Q_i$ is generic for Q_i over *V*.

The products considered in this talk will always have \aleph_2 -cc. (All Q_i will be of size 2^{\aleph_0} . Now use CH and a Δ -system argument.)

Why not CS products?

Problems

- G(i) is not generic over V[G(j)].
 (Actually: G(i) is generic over V[G(j)], but only for the forcing Q_i ∈ V. Often we have a definition of Q_i, and we can evaluate this definition in V[G(j)] yielding a name Q'_i; then G(i) is usually not generic for Q'_i[G(j)] over V[G(j)].
- Not clear if the product will preserve ℵ₁.

Examples

- The CS product of infinitely many Cohen reals collapses ω_1 .
- The CS product of infinitely many unbounded reals collapses ω₁.
- The product of 2 (!) proper forcing notions may collapse ω_1 . (ZFC example)

2 Products

5 liminf forcing and halving

PLAN On the following slides I will motivate the technique of "creatures" with "halving", which was one ingredient in a recent paper of A.Fischer-G-Kellner-Shelah. (not a new technique)

DISCLAIMER To make things more transparent, I will lie occasionally, by downplaying or ignoring important details.

WARNING Still, a lot of technical background needs to be digested.

1 Iteration

2 Products

3 Intermezzo

4 lim sup forcing

5 liminf forcing and halving

Generic null set

Motivation

Fix a sequence $\overline{J} = (J_n : n \in \omega)$ of intervals of natural numbers, which are far apart and grow quickly:

 $\cdots \ll \min J_n \ll \max J_n \ll \min J_{n+1} \ll \cdots$

We want to add a generic function g where $g(n) \subseteq 2^{J_n}$ is a set of large relative measure (say, more than $(1 - 1/2^n)$). The set $\{x \in 2^{\omega} \mid \forall n : x \mid J_n \in g(n)\}$ has positive measure, so $E_g := \{x \in 2^{\omega} \mid \forall^{\infty} n : x \mid J_n \in g(n)\}$ has measure 1. We want this set to avoid all ground model reals; "iterating" our forcing many times this will tend to make non(null) big. (non(null) = the smallest size of a non-Lebesgue-null set) We let LARGE_n := $\{A \subseteq 2^{J_n} : |A|/|2^{J_n}| > 1 - 1/2^n\}$.

A generic null set, part 2

We want to add a generic function g with $g(n) \subseteq 2^{J_n}$ a set in LARGE_n := { $A \subseteq 2^{J_n} : |A|/|2^{J_n}| > 1 - 1/2^n$ }.

Definition

Let $Q^{\bar{J}}$ be the set of all $p = (k^{p}, s^{p}, \bar{C}^{p})$, where

$$\mathbf{1} \ \mathbf{s}^{p} = (\mathbf{s}^{p}_{0}, \ldots, \mathbf{s}^{p}_{k^{p}-1}), \forall i < k^{p} : \mathbf{s}_{i} \in \mathsf{LARGE}_{i}.$$

2
$$\overline{C} = (C_n : n \ge k); \forall n : C_n \subseteq LARGE_n.$$

3
$$\limsup_{n\to\infty} \|C_n\|_n = \infty$$
, where $\|C\|_n = \log$ (some reasonable measure of *C*)/min $J_n!!$.

(Here $x \mapsto x!!$ is some sufficiently fast growing function.)

The sets C_n are called "creatures", their elements "possibilities". (Namely: possibilities for fragments of the generic.) Any generic filter *G* defines a generic function *g*, and the set $E_g := \{x \in 2^{\omega} \mid \forall^{\infty}n : x \upharpoonright J_n \in g(n)\}$ has measure 1. For every old real $x \in 2^{\omega}$, the set of all conditions *p* satisfying "there are infinitely many *n* such that $x \upharpoonright J_n$ avoids all $A \in C_n^p$ " is dense (explain why!); hence $x \in 2^{\omega} \setminus E_g$, a null set.

Lemma

The forcing $Q^{\overline{J}}$ has "continuous reading of names", even "rapid reading". (=Lipschitz reading)

More explicitly: For any name $x \in 2^{\omega}$, and any condition p there is a stronger condition q such that:

For all n, the value of x↾max(I_n) will depend only on g↾max(I_n).

Moreover, if we demand the above only for $n \ge n_0$, then we may also demand that p and q agree on all creatures below n_0 .

Proof.

A fusion argument. (blackboard?)

Corollary

Let \overline{J} and \overline{J}' be "very disjoint" sequences of intervals, and let $G \times G'$ be generic for the forcing $Q^{\overline{J}} \times Q^{\overline{J}'}$. Then the set $2^{\omega} \setminus E_g$ will cover not only all reals from V, but also all reals from V[G']. every $Q^{\overline{J}}$ -name $\underline{x} \in 2^{\omega}$

(For the proof, we have to work a bit with the norms.)

By modifying the forcing notion $Q^{\bar{J}}$ a little bit, we get the following stronger version:

Theorem

Assume GCH for simplicity, κ uncountable and regular. Let $P = \prod_{i < \kappa} Q_i$ be a countable support product of forcing notions Q_i , each isomorphic to (the same) $Q^{\overline{J}}$. Then each coordinate i^* comes conceptually "after" all the other coordinates. That means:

Whenever \underline{x} is a $\prod_{i \neq i^*} Q_i$ -name of a function in 2^{ω} , then x avoids the measure 1 set E_{g^*} (where g^* is the generic function added by Q_{i^*}).

As a consequence, $\Vdash_Q \operatorname{non}(\operatorname{null}) \geq \kappa$.

1 Iteration

- 2 Products
- 3 Intermezzo
- 4 lim sup forcing
- **(5)** liminf forcing and halving

WARNING Everything so far was just a warm-up. The serious stuff starts **now**.

We start by recalling the description of the generic null set, and change it to a generic meager set.

What we did 10 minutes ago: generic null

Motivation

Fix a sequence $\overline{J} = (J_n : n \in \omega)$ of intervals of natural numbers, which are far apart and grow quickly:

 $\cdots \ll \min J_n \ll \max J_n \ll \min J_{n+1} \ll \cdots$

We want to add a generic function g where $g(n) \subseteq 2^{J_n}$ is a set of large relative measure (say, more than $(1 - 1/2^n)$). The set $\{x \in 2^{\omega} \mid \forall n : x \upharpoonright J_n \in g(n)\}$ has positive measure, so $E_g := \{x \in 2^{\omega} \mid \forall^{\infty}n : x \upharpoonright J_n \in g(n)\}$ has measure 1. We want this set to avoid all ground model reals; "iterating" our forcing many times this will tend to make non(null) big. (non(null) = the smallest size of a non-Lebesgue-null set)

A generic meager set

Motivation

Fix a sequence $\overline{I} = (I_n : n \in \omega)$ of intervals of natural numbers, which are far apart and grow quickly:

 $\cdots \ll \min I_n \ll \max I_n \ll \min I_{n+1} \ll \cdots$

We want to add a generic function g, defined on $\bigcup_n I_n$. The set $R_g = \{x \in 2^{\omega} \mid \exists^{\infty}n : x \upharpoonright I_n = g \upharpoonright I_n\}$ is residual (co-meager), its complement $M_g := \{x \in 2^{\omega} \mid \forall^{\infty}n : x \upharpoonright I_n \neq g \upharpoonright I_n\}$ is meager. We want the set M_g to contain all ground model reals. This means that in our forcing conditions we must have the possibility to remove $x \upharpoonright I_n$ from almost all C_n . This will make fusion more difficult.

A generic meager set, part 2

We want to add a generic function g defined on $\bigcup_n I_n$,

Definition

Let Q^{l} be the set of all $p = (k^{p}, s^{p}, \overline{C}^{p}, \overline{d}^{p})$, where

1
$$s^{p} = (s_{0}^{p}, ..., s_{k^{p}-1}^{p}), \forall i < k^{p} : s_{i} \in 2^{l_{i}}.$$

2 $\overline{C} = (C_{n} : n \ge k); \forall n : \emptyset \neq C_{n} \subseteq 2^{l_{n}}.$
3 $d^{p} = (d_{n} : n \ge k), \text{ each } d_{n} \in \mathbb{R}^{+}.$
4 $\liminf_{n \to \infty} ||C_{n}||_{n} = \infty, \text{ where } ||C||_{n} = \log(|C| - d_{n})/\min_{n \in I_{n}!!}.$

 $q \le p$ means all the obvious things: *k* becomes bigger, *s* becomes longer (inside the appropriate C_i), the C_i shrink, and $d_n^q \ge d_n^p$ for all $n \ge k^q$.

Halving and unhalving

Halving = Take 50% of all our possessions (not counting those which are already hidden), and hide them in a secret stash. Logarithmically speaking, we have lost almost no money. (At most one zero, from 1000 million to 500 million) Concretely: Halving a creature (C_n , d_n) means: replace d_n by $d'_n := d_n + \frac{1}{2}(|C_n| - d_n)$. From $(|C_n| - d_n)$ to $(|C_n| - d'_n)$ we lose 50%, so the norm $\log (|C| - d_n)/\min J_n!!$ changes by at most $1/\min J_n!!$.

Unhalving = When you lose "all" your money, remember your secret stash and recover it. You are now almost as rich as before. (Logarithmically speaking, at most one digit less.) Concretely: go back from d'_n to d_n .

Technical lemma: If you apply unhalving to finitely many creatures of a condition q, resulting in a condition q', then $q' = {}^* q$.

Continuous reading, using halving

We use the lim sup forcing $Q^{\overline{l}}$ which adds a meager set. ("Wlog" we use concrete numbers, for better readability.)

Lemma (Unhalving Lemma)

Let $\underline{\alpha}$ be the name of an ordinal. Given a condition, say $p = (s = \emptyset, (C_0, d_0), (C_1, d_1), \ldots)$. Assume that C(0) allows only 3 possibilities, C(1) allows 10 possibilities, and all norms $\log(|C_n| - d_n)/n!!$ are bigger than 1000 for $n \ge 2$.

Then there is a condition $q \leq p$ such that

•
$$C_0^q = C_0^p$$
 and $C_1^q = C_1^p$,

• $\forall n \ge 2: \log(|C_n^q| - d_n^q)/n!! \ge 970$ (actually: $\ge 1000 - 30/2!!$)

• If there is a condition $r \leq q$, $r = (s_0, s_1, (C_2^r, d_2^r), \ldots)$ deciding $\underline{\alpha}$, with all norms > 0, then already $q \wedge (s_0, s_1) := (s_0, s_1, (C_2^q, d_2^q), \ldots)$ decides $\underline{\alpha}$.

This lemma, rewritten with the proper parameters, allows a fusion argument to show continuous reading for our forcing.

Proof of the unhalving lemma

Start with *p*. For each possibility *s* of the 30 possibilities from $C(0) \times C(1)$, say the *i*-th one, do the following:

- Strengthen the condition by replacing C(0) and C(1) by *s*.
- ("DECISION") Can you strengthen the current version of C(2), C(3),... in such a way that *α* is (essentially) decided, but all norms are still ≥ 1000 *i*? If so, do it.
- ("HALVING") Otherwise, apply "halving" to C(2), C(3), etc.

At the end we get a condition q.

Assume that $r = (s_0, s_1, (C_2^r, d_2^r), ...) \le q$ decides α . What did we do when we dealt (in step *i*) with (s_0, s_1) ?

- Decided α ? Good.
- Halving? Try to get a contradiction. Apply unhalving to all those (C_j^r, d_j^r) with norm < 1000 (there are only finitely many) to get a condition $r' =^* r$. But now in r' all creatures have norm $\geq 1000 - i$, so r' witnesses that we were in the DECISION case.

Conclusion

Theorem (Fischer-G-Kellner-Shelah 2015)

Assume GCH, and let κ , λ be regular uncountable. Let $(I_n : n \in \omega)$ and $(J_n : n \in \omega)$ be as above. (Fast growing sequences of intervals).

Let Q be a product of κ many copies of the "generic null" forcing $Q^{\overline{J}}$ and λ many copies of the "generic meager" forcing $Q^{\overline{I}}$. (not actually true... Use common halving parameter)

Then \Vdash_Q "any set of size $< \kappa$ is null, and any set of size $< \lambda$ is meager".

Moreover: \Vdash_Q *non(null)*= κ *, non(meager)*= λ .

Moreover: We can combine this with other forcings (e.g. making $2^{\aleph_0} = \mu$).